Sudut terbentuk karena dua sinar garis bertemu pada satu titik. Misalnya pemanah, sudut terbentuk antara tangan dengan badan pemanah. Untuk gambar pemancing, garis bantu merah sengaja ditambah untuk menunjukkan lebih jelas sudut yang terbentuk antara pancingan dengan bidang datar.
Secara matematis, hubungan sinar garis dan titik sudut diilustrasikan sebagai berikut.
Suatu sudut terbentuk dari perpotongan dua sinar garis yang berpotongan tepat di satu titik, sehingga titik potongnya disebut dengan titik sudut. Nama suatu sudut dapat berupa simbol α, β, dll, atau berdasarkan titik titik yang melalui garis yang berpotongan tersebut. Biasanya, satuan sudut dinyatakan dalam dua jenis, yaitu derajat ("°") dan radian (rad). ∠APB bisa juga disebut ∠P, dan besar sudut P dilambangkan dengan m∠P. Keterangan: Besar sudut satu putaran penuh adalah 360°
B. Menentukan Besar Sudut yang Dibentuk oleh Jarum Jam
Jarum jam terdiri dari jarum detik (jarum panjang), jarum menit, dan jarum yang menunjukkan jam. Dalam ukuran sudut dikenal juga istilah satuan derajat, menit, dan detik yang pengertiannya berbeda dengan satuan menit, detik pada satuan waktu .
Contoh 1 :
Tentukan ukuran sudut yang dibentuk oleh jarum jam dan jarum menit ketika menunjukkan pukul 02.00.
Pada pukul 02.00, jarum jam menunjuk ke arah bilangan 2 dan jarum menit menunjuk ke arah bilangan 12, sehingga sudut yang terbentuk adalah 1/6 putaran penuh. 1/6 × 360 = 60°Jadi sudut yang terbentuk oleh jarum jam dan jarum menit ketika pukul 02.00 adalah 60°.
Perputaran selama 12 jam jarum jam berputar sebesar 360°, akibatnya pergeseran tiap satu jam adalah 360°/12 = 30°.
Penamaan Sudut
Secara matematis, penamaan sudut diperlukan untuk mempermudah penamaan sudut untuk kajian selanjutnya. Dari di bawah ini, BA dan BC disebut kaki sudut. Titik B adalah titik sudut. Secara umum, ada dua penamaan sudut, yaitu:
- Titik B dapat dikatakan sebagai titik sudut B seperti pada gambar. Ingat, penulisannya selalu menggunakan huruf kapital.
- Sudut yang terbentuk pada gambar di samping dapat juga disimbolkan dengan ∠ABC atau ∠CBA atau ∠B.
Pada setiap sudut yang terbentuk, harus kita tahu berapa besar derajat sudutnya. Secara manual, kita dapat menggunakan alat ukur sudut yaitu busur. Alat ini dapat membantu kita mengukur suatu sudut yang sudah terbentuk dan membentuk besar sudut yang akan digambar. Perlu kita kenalkan bahwa, terdapat ukuran sudut standar yang perlu kita ketahui, seperti yang disajikan pada gambar di bawah ini.
- Sudut Siku-Siku: ukuran sudutnya 90°
- Sudut Lancip: ukuran sudutnya antara 0° dan 90°
- Sudut Tumpul: ukuran sudutnya antara 90° dan 180°
- Sudut Lurus: ukuran sudutnya 180°
- Sudut Reflek: ukuran sudutnya antara 180° dan 360°
Hubungan Antarsudut (Pelurus, Penyiku, dan Bertolak Belakang)
Pasangan Sudut yang Saling Berpelurus (Bersuplemen)
Perhatikan gambar di bawah.
Garis AB merupakan garis lurus, sehingga besar ∠AOB = 180°. Pada garis AB, dari titik O dibuat garis melalui C, sehingga terbentuk ∠AOC dan ∠BOC.
∠AOC merupakan pelurus atau suplemen dari ∠BOC. Demikian pula sebaliknya, ∠BOC merupakan pelurus atau suplemen ∠AOC, sehingga diperoleh:
Perhatikan gambar di bawah.
∠AOC merupakan pelurus atau suplemen dari ∠BOC. Demikian pula sebaliknya, ∠BOC merupakan pelurus atau suplemen ∠AOC, sehingga diperoleh:
∠AOC + ∠BOC = ∠AOB
a° + b° = 180°
atau dapat ditulis:
a° = 180° – b° atau
b° = 180° – a°.
Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpelurus (bersuplemen) adalah 180°. Sudut yang satu merupakan pelurus dari sudut yang lain.
Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpelurus (bersuplemen) adalah 180°. Sudut yang satu merupakan pelurus dari sudut yang lain.
Contoh Soal
Perhatikan gambar di bawah ini.
Hitunglah nilai a° dan tentukan pelurus dari sudut a°.
Penyelesaian:
Berdasarkan gambar diperoleh bahwa
3a° + 2a° = 180°
5a° = 180°
a° = 180°/5
a° = 36
Pelurus sudut a° = 180° – 36° = 144°.
Pasangan Sudut yang Saling Berpenyiku (Berkomplemen)
Perhatikan gambar di bawah ini.
Perhatikan gambar di bawah ini.
∠PQS + ∠RQS = ∠PQR
x° + y° = 90°,
dengan
x° = 90° – y° dan
y° = 90° – x°.
Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpenyiku (berkomplemen) adalah 90°. Sudut yang satu merupakan penyiku dari sudut yang lain.
Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpenyiku (berkomplemen) adalah 90°. Sudut yang satu merupakan penyiku dari sudut yang lain.
Contoh Soal
Perhatikan gambar di bawah.
Perhatikan gambar di bawah.
Berdasarkan gambar di atas hitunglah nilai x°; berapakah penyiku sudut x°; dan berapakah pelurus dari penyiku x°?
Penyelesaian:
x° + 3 x° = 90°
4 x° = 90°
x° = 22,5°
penyiku dari x° = 90° - 22,5° = 67,5°
pelurus dari penyiku x° = 180° - 67,5° = 112,5°
Pasangan Sudut yang Saling Bertolak Belakang
Perhatikan gambar di bawah ini.
Pada gambar di atas, garis KM dan LN saling berpotongan di titik O. Dua sudut yang letaknya saling membelakangi disebut dua sudut yang saling bertolak belakang, sehingga diperoleh sudut KON bertolak belakang dengan sudut LOM; dan sudut NOM bertolak belakang dengan sudut KOL.
Bagaimana besar sudut yang saling bertolak belakang? Agar dapat menjawabnya, perhatikan uraian berikut.
Perhatikan gambar di bawah ini.
Bagaimana besar sudut yang saling bertolak belakang? Agar dapat menjawabnya, perhatikan uraian berikut.
∠KOL + ∠LOM = 180° (berpelurus)
∠LOM = 180° – ∠KOL ........................... (i)
∠NOM + ∠LOM = 180° (berpelurus)
∠LOM = 180° – ∠MON ......................... (ii)
Dari persamaan (i) dan (ii) diperoleh:
∠LOM = ∠LOM
180° – ∠KOL = 180° – ∠MON
∠NOM =∠KOL
Jadi, besar ∠KOL = besar ∠MON.
∠MON + ∠KON = 180° (berpelurus)
∠MON = 180° – ∠KON ........................... (a)
∠MON + ∠LOM = 180° (berpelurus)
∠MON = 180° – ∠LOM ......................... (b)
Dari persamaan (a) dan (b) diperoleh:
∠MON = ∠MON
180° – ∠KON = 180° – ∠LOM
∠LOM =∠KON
Jadi, besar ∠KON = besar ∠LOM.
Dari uraian di atas dapat disimpulkan sebagai berikut. Jika dua garis berpotongan maka dua sudut yang letaknya saling membelakangi titik potongnya disebut dua sudut yang bertolak belakang. Dua sudut yang saling bertolak belakang adalah sama besar.
Dari uraian di atas dapat disimpulkan sebagai berikut. Jika dua garis berpotongan maka dua sudut yang letaknya saling membelakangi titik potongnya disebut dua sudut yang bertolak belakang. Dua sudut yang saling bertolak belakang adalah sama besar.
Contoh Soal
Perhatikan gambar di bawah ini.
Diketahui besar ∠SOP = 45°. Tentukan besar ∠ROQ, ∠SOR, dan ∠POQ.Penyelesaian:
Diketahui:
∠SOP = 45°
∠SOP = 45°
∠ROQ = ∠SOP (bertolak belakang)
∠ROQ = 45°
∠SOP + ∠SOR = 180° (berpelurus)
∠ROQ = 45°
∠SOP + ∠SOR = 180° (berpelurus)
45° + ∠SOR = 180°
∠SOR = 180° – 45°
∠SOR = 135°
∠POQ = ∠SOR (bertolak belakang)
∠POQ = 135°
Tidak ada komentar:
Posting Komentar